Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.460
Filtrar
1.
Methods Mol Biol ; 2782: 209-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622405

RESUMO

T cells are instrumental in protecting the host against invading pathogens and the development of cancer. To do so, they produce effector molecules such as granzymes, interleukins, interferons, and perforin. For the development and immunomonitoring of therapeutic applications such as cell-based therapies and vaccines, assessing T cell effector function is paramount. This can be achieved through various methods, such as 51Cr release assays, flow cytometry, and enzyme-linked immune absorbent spot (ELISpot) assays. For T cell ELISpots, plates are coated with antibodies directed against the effector molecule of interest (e.g., IFN-g). Subsequently, peripheral blood mononuclear cells (PBMCs) or isolated T cells are cultured on the plate together with stimuli of choice, and the production of effector molecules is visualized via labeled detection antibodies. For clinical studies, ELISpot is currently the gold standard to determine antigen-specific T cell frequencies. In contrast to 51Cr release assays, ELISpot allows for the exact enumeration of responding T cells, and compared to flow cytometry, ELISpot is more cost-effective and high throughput. Here, we optimize and describe, in a step-by-step fashion, how to perform a controlled IFN-γ ELISpot experiment to determine the frequency of responding or antigen-specific T cells in healthy human volunteers. Of note, this protocol can also be employed to assess the frequency of antigen-specific T cells induced in, e.g., vaccination studies or present in cellular products.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , ELISPOT/métodos , Antígenos , Granzimas , Ensaio de Imunoadsorção Enzimática/métodos
2.
Front Immunol ; 15: 1338937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449861

RESUMO

Introduction: The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods: Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results: A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion: Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.


Assuntos
Tricotecenos , Zearalenona , Animais , Suínos , Formação de Anticorpos , Leucócitos Mononucleares , Proliferação de Células , Adjuvantes Imunológicos , ELISPOT , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
3.
Methods Mol Biol ; 2768: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502384

RESUMO

The ELISpot assay has a solid place in the immune monitoring field for over 40 years. It is an assay that can assess the function of single immune cells in a straightforward and easy-to-learn approach. Its use in basic research, translational, and clinical work has been documented in countless publications. Harmonization guidelines and invaluable tools for optimal assay performance and evaluation exist. However, the validation of an established ELISpot protocol has been left to diverse opinions about how to interpret and tackle typical validation parameters. This chapter addresses important considerations for ELISpot validation, including the interpretations of validation parameters for a meaningful description of assay performance.


Assuntos
Interferon gama , ELISPOT/métodos
4.
Methods Mol Biol ; 2768: 87-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502389

RESUMO

ELISpot and flow cytometry are two methods often utilized side-by-side for detecting secreted and intracellular cytokines, respectively. Each application has its own advantages and challenges. ELISpot is more sensitive compared to ELISA and appears to be more consistent in detecting IL-10 production than flow cytometry. ELISpot can be used for detecting the secretion of multiple cytokines but not from the same cells simultaneously, whereas flow cytometry allows for the concurrent detection of multiple intracellular cytokines by the same cells. Flow cytometry is a convenient technique allowing for the detection of many cytokines at the same time in a population of cells. The restimulation cocktails used for cytokine detection in flow cytometry are hard on cells and lead to decreased cell viability. Using a live dead dye allows for the exclusion of dead cells when analyzing data. We illustrated the differences between ELISpot and flow cytometry by stimulating cells with two toll-like receptor (TLR) agonists, LPS or Pam3CSK4. Both activators increase production of various cytokines, including IL-10, IL-6, and TNF-alpha. The TLR2 antagonist, MMG-11, was used to inhibit this increased cytokine production. We observed some inhibition of IL-6 and IL-10 from Pam3CSK4 stimulation in the presence of MMG-11 by flow cytometry. TNF-α remains largely unchanged as its basal expression is high, but there is some reduction in the presence of MMG-11 for both methods. However, IL-10 was difficult to detect by ELISpot given the low seeding density. Overall, both ELISpot and flow cytometry are good methods for detecting secreted and intracellular cytokines, respectively, and should be used as complimentary assays.


Assuntos
Interleucina-10 , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Interleucina-6 , Citometria de Fluxo , Citocinas/metabolismo , ELISPOT
5.
Methods Mol Biol ; 2768: 105-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502390

RESUMO

ELISPOT and FluoroSpot assays, collectively called ImmunoSpot assays, permit to reliable detection of rare antigen-specific T cells in freshly isolated cell material, such as peripheral blood mononuclear cells (PBMC). Establishing their frequency within all PBMC permits to assess the magnitude of antigen-specific T-cell immunity; the simultaneous measurement of their cytokine signatures reveals these T-cells' lineage and effector functions, that is, the quality of T-cell-mediated immunity. Because of their unparalleled sensitivity, ease of implementation, robustness, and frugality in PBMC utilization, T-cell ImmunoSpot assays are increasingly becoming part of the standard immune monitoring repertoire. For regulated workflows, stringent audit trails of the data generated are a requirement. While this has been fully accomplished for the analysis of T-cell ImmunoSpot assay results, such are missing for the wet laboratory implementation of the actual test performed. Here we introduce a solution for enhancing and verifying the error-free implementation of T-cell ImmunoSpot assays.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Citocinas , ELISPOT/métodos , Imunidade Celular
6.
Methods Mol Biol ; 2768: 117-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502391

RESUMO

SARS-CoV-2 continues to threaten global public health, making COVID-19 immunity studies of utmost importance. Waning of antibody responses postinfection and/or vaccination and the emergence of immune escape variants have been ongoing challenges in mitigating SARS-CoV-2 morbidity and mortality. While a tremendous amount of work has been done to characterize humoral immune responses to SARS-CoV-2 virus and vaccines, cellular immunity, mediated by T cells, is critical for efficient viral control and protection and demonstrates high durability and cross-reactivity to coronavirus variants. Thus, ELISPOT, a standard assay for antigen-specific cellular immune response assessment, allows us to evaluate SARS-CoV-2-specific T-cell response by quantifying the frequency of SARS-CoV-2-specific cytokine-secreting cells in vitro. We have outlined a detailed procedure to study T-cell recall responses to SARS-CoV-2 in human peripheral blood mononuclear cells (PBMCs) following infection and/or vaccination using an optimized IFN-γ ELISPOT assay. Our methodologies can be adapted to assess other cytokines and are a useful tool for studying other viral pathogen and/or peptide-specific T-cell responses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , ELISPOT , Leucócitos Mononucleares , Peptídeos , Citocinas , Imunidade Celular , Anticorpos Antivirais , Vacinação
7.
Methods Mol Biol ; 2768: 51-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502387

RESUMO

ELISpot (enzyme-linked immunospot) is a powerful immunological tool for the detection of cytokine-secreting cells at a single-cell resolution. It is widely used for the diagnosis of various infectious diseases, e.g., tuberculosis and sarcoidosis, and it is also widely used in cancer immunotherapy research. Its ability to distinguish between active and latent forms of tuberculosis makes it an extremely powerful tool for epidemiological studies and contact tracing. In addition to that, it is a very useful tool for the research and development of cancer immunotherapies. ELISpot can be employed to assess the immune responses against various tumor-associated antigens, which could provide valuable insights for the development of effective therapies against cancers. Furthermore, it plays a crucial role to the evaluation of immune responses against specific antigens that not only could aid in vaccine development but also assist in treatment monitoring and development of therapeutic and diagnostic strategies. This chapter briefly describes some of the applications of ELISpot in tuberculosis and cancer research.


Assuntos
Mycobacterium tuberculosis , Neoplasias , Tuberculose , Humanos , Teste Tuberculínico , Tuberculose/diagnóstico , Tuberculose/terapia , ELISPOT , Antígenos de Bactérias , Imunoterapia , Neoplasias/diagnóstico , Neoplasias/terapia
8.
Methods Mol Biol ; 2768: 153-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502393

RESUMO

Vaccination against SARS-CoV-2 with coronavirus vaccines that elicit protective immune responses is critical to the prevention of severe disease and mortality associated with SARS-CoV-2 infection. Understanding the adaptive immune responses to SARS-CoV-2 infection and/or vaccination will continue to aid in the development of next-generation vaccines. Studies have shown the important role of SARS-CoV-2-specific antibodies for both disease resolution and prevention of COVID-19 serious sequelae following vaccination. However, antibody responses are short-lived, highlighting the importance of studying antigen-specific B-cell responses to better understand durable immunity and immunologic memory. Since the spike protein is the main target of antibody-producing B cells, we developed a SARS-CoV-2 memory B cell ELISPOT assay to measure the frequencies of spike-specific B cells after COVID-19 infection and/or vaccination. Here, we describe in detail the methodology for using this ELISPOT assay to quantify SARS-CoV-2 spike-specific memory B cells produced by infection and/or vaccination in human PBMC samples. Application of this assay may help better understand and predict SARS-CoV-2 recall immune responses and to develop potential B cell correlates of protection at the methodological level.


Assuntos
COVID-19 , Vacinas , Humanos , Células B de Memória , Glicoproteína da Espícula de Coronavírus , ELISPOT , Leucócitos Mononucleares , SARS-CoV-2 , Anticorpos Antivirais , Vacinação
9.
Methods Mol Biol ; 2768: 59-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502388

RESUMO

Antigen-specific B-cell ELISPOT and multicolor FluoroSpot assays, in which the membrane-bound antigen itself serves as the capture reagent for the antibodies that B cells secrete, inherently result in a broad range of spot sizes and intensities. The diversity of secretory footprint morphologies reflects the polyclonal nature of the antigen-specific B cell repertoire, with individual antibody-secreting B cells in the test sample differing in their affinity for the antigen, fine epitope specificity, and activation/secretion kinetics. To account for these heterogeneous spot morphologies, and to eliminate the need for setting up subjective counting parameters well-by-well, CTL introduces here its cutting-edge deep learning-based IntelliCount™ algorithm within the ImmunoSpot® Studio Software Suite, which integrates CTL's proprietary deep neural network. Here, we report detailed analyses of spots with a broad range of morphologies that were challenging to analyze using standard parameter-based counting approaches. IntelliCount™, especially in conjunction with high dynamic range (HDR) imaging, permits the extraction of accurate, high-content information of such spots, as required for assessing the affinity distribution of an antigen-specific memory B-cell repertoire ex vivo. IntelliCount™ also extends the range in which the number of antibody-secreting B cells plated and spots detected follow a linear function; that is, in which the frequencies of antigen-specific B cells can be accurately established. Introducing high-content analysis of secretory footprints in B-cell ELISPOT/FluoroSpot assays, therefore, fundamentally enhances the depth in which an antigen-specific B-cell repertoire can be studied using freshly isolated or cryopreserved primary cell material, such as peripheral blood mononuclear cells.


Assuntos
Inteligência Artificial , Leucócitos Mononucleares , ELISPOT/métodos , Algoritmos , Linfócitos B , Antígenos
10.
Methods Mol Biol ; 2768: 297-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502400

RESUMO

Switching from ELISpot to FluoroSpot enables the analysis of spot-forming units representing cells producing different cytokines as well as the frequencies of spots derived from cells co-secreting multiple cytokines. Due to the fluorescent read-out signal, sophisticated reader instruments can also measure the relative spot volume, making it possible to differentiate between spots generated by cells secreting different levels of one or more cytokines. Here we describe how triple FluoroSpot assays can be used to define polyfunctional T cells secreting multiple cytokines and how different T-cell populations can differ in the levels of cytokines they secrete.


Assuntos
Citocinas , Linfócitos T , Linfócitos T/química , Citocinas/análise , ELISPOT , Antígenos , Corantes
11.
Methods Mol Biol ; 2768: 211-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502396

RESUMO

The affinity distribution of the antigen-specific memory B cell (Bmem) repertoire in the body is a critical variable that defines an individual's ability to rapidly generate high-affinity protective antibody specificities. Detailed measurement of antibody affinity so far has largely been confined to studies of monoclonal antibodies (mAbs) and are laborious since each individual mAb needs to be evaluated in isolation. Here, we introduce two variants of the B cell ImmunoSpot® assay that are suitable for simultaneously assessing the affinity distribution of hundreds of individual B cells within a test sample at single-cell resolution using relatively little labor and with high-throughput capacity. First, we experimentally validated that both ImmunoSpot® assay variants are suitable for establishing functional affinity hierarchies using B cell hybridoma lines as model antibody-secreting cells (ASC), each producing mAb with known affinity for a defined antigen. We then leveraged both ImmunoSpot® variants for characterizing the affinity distribution of SARS-CoV-2 Spike-specific ASC in PBMC following COVID-19 mRNA vaccination. Such ImmunoSpot® assays promise to offer tremendous value for future B cell immune monitoring efforts, owing to their ease of implementation, applicability to essentially any antigenic system, economy of PBMC utilization, high-throughput capacity, and suitability for regulated testing.


Assuntos
Linfócitos B , Leucócitos Mononucleares , Leucócitos Mononucleares/metabolismo , ELISPOT , Antígenos , Células Produtoras de Anticorpos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
12.
Methods Mol Biol ; 2768: 273-296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502399

RESUMO

Enzyme-linked immunospot (ELISPOT) is one of the most important methods to measure the number of specific cells by detecting protein secretion at a single-cell level. However, traditional ELISPOT based on enzyme-substrate color development can only detect one target. Therefore, scientists developed multiple-target ELISPOT based on enzyme-substrate coloring. Besides, FluoroSPOT that can detect 2-4 fluorescent signals are developed. Nevertheless, the maximum detection targets of multiple-target ELISPOT and FluoroSPOT are around 4, and the signal amplification system can be further optimized. Fluorescence-based oligo-linked immunospot (FOLISPOT), which utilized DNA-barcoded antibodies to provide a highly multiplexed method with signal amplification, was developed to detect multiple targets simultaneously. In this method, multiple targets can be detected in one round and multiple rounds of detection can be conducted, and thus a large number of targets can be detected. Besides, signal amplification is achieved by DNA complementary pairing and modular orthogonal DNA concatemers, and thus cells secreting limited amounts of proteins can be detected. According to the studies, FOLISPOT can detect more spots than ELISPOT and can detect targets that are undetectable by ELISPOT. Furthermore, FOLISPOT can be utilized to detect more than 6 targets, by allowing sequential detection of multiple targets in one round and sequential detection in multiple rounds.


Assuntos
Citocinas , Linfócitos T , ELISPOT/métodos , Citocinas/metabolismo , Linfócitos B , Corantes/metabolismo
13.
Front Immunol ; 15: 1305586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322252

RESUMO

Introduction: One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities. The factors responsible for Nigeria's relatively low loss of life due to COVID-19 are unknown. Also, the correlates of protective immunity to SARS-CoV-2 and the impact of pre-existing immunity on the outcome of the COVID-19 pandemic in Africa are yet to be elucidated. Here, we evaluated the natural and vaccine-induced immune responses from vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria throughout the three waves of the COVID-19 pandemic in Nigeria. We also examined the pre-existing immune responses to SARS-CoV-2 from samples collected prior to the COVID-19 pandemic. Methods: We used spike RBD and N- IgG antibody ELISA to measure binding antibody responses, SARS-CoV-2 pseudotype assay protocol expressing the spike protein of different variants (D614G, Delta, Beta, Omicron BA1) to measure neutralizing antibody responses and nucleoprotein (N) and spike (S1, S2) direct ex vivo interferon gamma (IFNγ) T cell ELISpot to measure T cell responses. Result: Our study demonstrated a similar magnitude of both binding (N-IgG (74% and 62%), S-RBD IgG (70% and 53%) and neutralizing (D614G (49% and 29%), Delta (56% and 47%), Beta (48% and 24%), Omicron BA1 (41% and 21%)) antibody responses from symptomatic and asymptomatic survivors in Nigeria. A similar magnitude was also seen among vaccinated participants. Interestingly, we revealed the presence of preexisting binding antibodies (N-IgG (60%) and S-RBD IgG (44%)) but no neutralizing antibodies from samples collected prior to the pandemic. Discussion: These findings revealed that both vaccinated, non-vaccinated and convalescent individuals in Southern Nigeria make similar magnitude of both binding and cross-reactive neutralizing antibody responses. It supported the presence of preexisting binding antibody responses among some Nigerians prior to the COVID-19 pandemic. Lastly, hybrid immunity and heterologous vaccine boosting induced the strongest binding and broadly neutralizing antibody responses compared to vaccine or infection-acquired immunity alone.


Assuntos
COVID-19 , População da África Ocidental , Humanos , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , COVID-19/imunologia , ELISPOT , Imunoglobulina G , Nigéria , Pandemias , SARS-CoV-2
14.
Int Immunopharmacol ; 129: 111542, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342063

RESUMO

Research dedicated to diagnostic reagents and vaccine development for tuberculosis (TB) is challenging due to the paucity of immunodominant antigens that can predict disease risk and exhibit protective potential. Therefore, it is crucial to identify T-cell epitope-based Mycobacterium tuberculosis (MTB) antigens characterized by specific and prominent recognition by the immune system. In this study, we constructed a T-cell epitope-rich tripeptide-splicing fragment (nucleotide positions 131-194, 334-377, and 579-643) of Rv2201 (also known as the 72 kDa AsnB)from the MTB genome, ultimately yielding the recombinant protein Rv2201-519 in Escherichia coli BL21 (DE3). Subsequently, we gauged the recombinant protein's ability to detect tuberculosis infection through ELISpot and assessed its immunostimulatory effect on mouse models using flow cytometry and ELISA. Our results indicated that Rv2201-519 possessed promising sensitivity; however, the sensitivity was lower than that of a commercial diagnostic kit containing ESAT-6, CFP-10, and Rv3615c (80.56 % vs. 94.44 %). The Rv2201-519 group exhibited a propensity for a CD4+ Th1 cell immune response in inoculated BALB/c mice that manifested as higher levels of antigen-specific IgG production (IgG2a/IgG1 > 1). In comparison to Ag85B, Rv2201-519 induced a more robust Th1-type cellular immune response as evidenced by a notable rise in the ratio of IFN-γ/IL-4 and IL-12 cytokine production and increased CD4+ T cell activation with a higher percentage of CD4+IFN-γ+ T cells. Rv2201-519 also induced a higher level of IL-6 compared with Ag85B, a higher percentage of CD8+ T cells specific for Rv2201-519, and a lower percentage of CD8+IL-4+ T cells. Collectively, the current evidence suggests that Rv2201-519 could potentially serve as an immunodominant protein for tuberculosis infection screening, laying the groundwork for further evaluation in recombinant Bacillus Calmette-Guérin (BCG) and subunit vaccines against MTB challenges in future studies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Epitopos de Linfócito T , Linfócitos T CD8-Positivos , Antígenos de Bactérias , Interleucina-4 , Tuberculose/diagnóstico , Tuberculose/prevenção & controle , ELISPOT , Proteínas Recombinantes , Desenvolvimento de Vacinas , Proteínas de Bactérias/genética
15.
Vaccine ; 42(6): 1292-1299, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38296705

RESUMO

BACKGROUND: The emergence and rapid spread of new mutant strains of SARS-CoV-2 necessitate the development of a new generation vaccine capable of neutralizing a broad range of variants. When the SARS-CoV-2 Omicron variant emerged, individuals in China had already received an inactivated (INA) or a type 5 adenovirus-vectored (Ad5) SARS-CoV-2 vaccine targeting the wild-type virus. We have recently developed a bivalent recombinant type 5 vaccine targeting both the wild-type strain and the Omicron variant (Ad5-nCoV/O). The objectives of this study were to assess the immunogenicity of the bivalent vaccine as a booster against both the wild type and the Omicron variant. METHODS: In the single immunization model, mice received one intramuscular immunization with monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. In the prime-boost model, mice were primed intramuscularly with an INA or Ad5-vectored vaccine targeting wild-type SARS-CoV-2, and then boosted intramuscularly or intranasally with heterologous or homologous INA or monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. The vaccine-induced antibody responses and cellular immune responses were measured using ELISA, pseudovirus-based neutralization assays, the intracellular cytokine staining (ICS) and ELISpot. RESULTS: Single-dose prime vaccination with the monovalent and bivalent vaccines elicited robust antibody responses and CD4 + and CD8 + cellular responses against the spike protein of WT and Omicron SARS-CoV-2. Both intramuscular and intranasal boost vaccination with the bivalent Ad5-nCoV/O following a prime with INA or Ad5-vectored vaccines induced strong serum neutralization antibody responses to both wild type and Omicron variants. A heterologous prime-boost vaccination elicited greater neutralization antibody responses than a homologous prime-boost vaccination when mice were boosted with Ad5-vectored vaccines following a prime with INA. Intranasal boost also resulted in significant mucosal IgA responses. CONCLUSION: The bivalent vaccine Ad5-nCoV/O exhibited robust immunogenicity, inducing broad-spectrum cross-neutralizing antibodies and cellular immune responses against both wild type and Omicron variants of SARS-CoV-2. The results demonstrated the potential of the bivalent vaccine in addressing the challenges posed by emerging SARS-CoV-2 Omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Vacinas Combinadas , Modelos Animais de Doenças , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , ELISPOT , Adenoviridae/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
16.
Methods Mol Biol ; 2742: 77-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165616

RESUMO

To diagnose Lyme Borreliosis, it is advised to use an enzyme-linked immunosorbent test to check for serum antibodies specific for Lyme and all tests with positive or ambiguous enzyme-linked immunosorbent assay (ELISA) results being confirmed by immunoblot. This method of measuring the humoral immunity in human fluids (e.g., by ELISA) has provided robust and reproducible results for decades and similar assays have been validated for monitoring of B cell immunity. These immunological tests that detect antibodies to Borrelia burgdorferi are useful in the diagnosis of Borreliosis on a routine basis. The variety of different Borrelia species and their different geographic distributions are the main reasons why standards and recommendations are not identical across all geographic regions of the world. In contrast to humoral immunity, the T cell reaction or cellular immunity to the Borrelia infection has not been well elucidated, but over time with more studies a novel T cell-based assay (EliSpot) has been developed and validated for the sensitive detection of antigen-specific T cell responses to B. burgdorferi. The EliSpot Lyme assay can be used to study the T cell response elicited by Borrelia infections, which bridges the gap between the ability to detect humoral immunity and cellular immunity in Lyme disease. In addition, detecting cellular immunity may be a helpful laboratory diagnostic test for Lyme disease, especially for seronegative Lyme patients. Since serodiagnostic methods of the Borrelia infection frequently provide false positive and negative results, this T cell-based diagnostic test (cellular assay) may help in confirming a Lyme diagnosis. Many clinical laboratories are convinced that the cellular assay is superior to the Western Blot assay in terms of sensitivity for detecting the underlying Borrelia infection. Research also suggests that there is a dissociation between the magnitude of the humoral and the T cell-mediated cellular immune responses in the Borrelia infection. Lastly, the data implies that the EliSpot Lyme assay may be helpful to identify Borrelia infected individuals when the serology-based diagnostic fails to do so. Here in this chapter the pairing of humoral and cellular immunity is employed to evaluate the adaptive response in patients.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Doença de Lyme/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , ELISPOT , Imunidade Celular , Anticorpos Antibacterianos
17.
J Immunol Methods ; 524: 113588, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040193

RESUMO

The Enzyme-Linked ImmunoSpot (ELISpot) assay detects cytokines secreted during T cell-specific immune responses against pathogens. As this assay has acquired importance in the clinical setting, standard bioanalytical evaluation of this method is required. Here, we describe a formal bioanalytical validation of a double-color ELISpot assay for the evaluation of IFN-γ and IL-4 released by T helper 1 and T helper 2 cells, respectively. As recommended by international guidelines, the parameters assessed were: range and detection limits (limit of detection, LOD; upper and lower limit of quantification, ULOQ and LLOQ), Linearity, Relative Accuracy, Repeatability, Intermediate Precision, Specificity and Robustness. The results obtained in this validation study demonstrate that this assay meets the established acceptability criteria. ELISpot is therefore a reliable technique for measuring T cell-specific immune responses against various antigens of interest.


Assuntos
Interleucina-4 , Leucócitos Mononucleares , Humanos , Interferon gama , ELISPOT/métodos , Citocinas
18.
J Allergy Clin Immunol ; 153(1): 193-202, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678574

RESUMO

BACKGROUND: Diagnosing drug-induced allergy, especially nonimmediate phenotypes, is challenging. Incorrect classifications have unwanted consequences. OBJECTIVE: We sought to evaluate the diagnostic utility of IFN-γ ELISpot and clinical parameters in predicting drug-induced nonimmediate hypersensitivity using machine learning. METHODS: The study recruited 393 patients. A positive patch test or drug provocation test (DPT) was used to define positive drug hypersensitivity. Various clinical factors were considered in developing random forest (RF) and logistic regression (LR) models. Performances were compared against the IFN-γ ELISpot-only model. RESULTS: Among the 102 patients who had 164 DPTs, most patients had severe cutaneous adverse reactions (35/102, 34.3%) and maculopapular exanthems (33/102, 32.4%). Common suspected drugs were antituberculosis drugs (46/164, 28.1%) and ß-lactams (42/164, 25.6%). Mean (SD) age of patients with DPT was 52.7 (20.8) years. IFN-γ ELISpot, fixed drug eruption, Naranjo categories, and nonsteroidal anti-inflammatory drugs were the most important features in all developed models. The RF and LR models had higher discriminating abilities. An IFN-γ ELISpot cutoff value of 16.0 spot-forming cells/106 PBMCs achieved 94.8% specificity and 57.1% sensitivity. Depending on clinical needs, optimal cutoff values for RF and LR models can be chosen to achieve either high specificity (0.41 for 96.1% specificity and 0.52 for 97.4% specificity, respectively) or high sensitivity (0.26 for 78.6% sensitivity and 0.37 for 71.4% sensitivity, respectively). CONCLUSIONS: IFN-γ ELISpot assay was valuable in identifying culprit drugs, whether used individually or incorporated in a prediction model. Performances of RF and LR models were comparable. Additional test datasets with DPT would be helpful to validate the model further.


Assuntos
Hipersensibilidade a Drogas , Humanos , Pessoa de Meia-Idade , Hipersensibilidade a Drogas/diagnóstico , beta-Lactamas/efeitos adversos , Testes Imunológicos , ELISPOT , Testes do Emplastro
19.
BMC Infect Dis ; 23(1): 846, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041026

RESUMO

BACKGROUND: Protection against SARS-CoV-2 is mediated by humoral and T cell responses. Pakistan faced relatively low morbidity and mortality from COVID-19 through the pandemic. To examine the role of prior immunity in the population, we studied IgG antibody response levels, virus neutralizing activity and T cell reactivity to Spike protein in a healthy control group (HG) as compared with COVID-19 cases and individuals from the pre-pandemic period (PP). METHODS: HG and COVID-19 participants were recruited between October 2020 and May 2021. Pre-pandemic sera was collected before 2018. IgG antibodies against Spike and its Receptor Binding Domain (RBD) were determined by ELISA. Virus neutralization activity was determined using a PCR-based micro-neutralization assay. T cell - IFN-γ activation was assessed by ELISpot. RESULTS: Overall, the magnitude of anti-Spike IgG antibody levels as well as seropositivity was greatest in COVID-19 cases (90%) as compared with HG (39.8%) and PP (12.2%). During the study period, Pakistan experienced three COVID-19 waves. We observed that IgG seropositivity to Spike in HG increased from 10.3 to 83.5% during the study, whilst seropositivity to RBD increased from 7.5 to 33.3%. IgG antibodies to Spike and RBD were correlated positively in all three study groups. Virus neutralizing activity was identified in sera of COVID-19, HG and PP. Spike reactive T cells were present in COVID-19, HG and PP groups. Individuals with reactive T cells included those with and without IgG antibodies to Spike. CONCLUSIONS: Antibody and T cell responses to Spike protein in individuals from the pre-pandemic period suggest prior immunity against SARS-CoV-2, most likely from cross-reactive responses. The rising seroprevalence observed in healthy individuals through the pandemic without known COVID-19 may be due to the activation of adaptive immunity from cross-reactive memory B and T cells. This may explain the more favourable COVID-19 outcomes observed in this population.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Paquistão/epidemiologia , Pandemias , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Imunoglobulina G , ELISPOT , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral
20.
Curr Protoc ; 3(11): e934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966108

RESUMO

Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Humanos , ELISPOT , Peptídeos , Linfócitos T CD4-Positivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...